
The Spatial Skyline Queries∗

Mehdi Sharifzadeh
Computer Science Department

University of Southern California
Los Angeles, CA 90089-0781

sharifza@usc.edu

Cyrus Shahabi
Computer Science Department

University of Southern California
Los Angeles, CA 90089-0781

shahabi@usc.edu

ABSTRACT
In this paper, for the first time, we introduce the concept
of Spatial Skyline Queries (SSQ). Given a set of data points
P and a set of query points Q, each data point has a num-
ber of derived spatial attributes each of which is the point’s
distance to a query point. An SSQ retrieves those points of
P which are not dominated by any other point in P consid-
ering their derived spatial attributes. The main difference
with the regular skyline query is that this spatial domina-
tion depends on the location of the query points Q. SSQ has
application in several domains such as emergency response
and online maps. The main intuition and novelty behind
our approaches is that we exploit the geometric properties
of the SSQ problem space to avoid the exhaustive exam-
ination of all the point pairs in P and Q. Consequently,
we reduce the complexity of SSQ search from O(|P |2|Q|) to

O(|S|2|C| + |P |), where |S| and |C| are the solution size
and the number of vertices of the convex hull of Q, respec-
tively.

We propose two algorithms, B2S2 and VS2, for static
query points and one algorithm, VCS2, for streaming Q
whose points change location over time (e.g., are mobile).
VCS2 exploits the pattern of change in Q to avoid unneces-
sary re-computation of the skyline and hence efficiently per-
form updates. Our extensive experiments using real-world
datasets verify that both R-tree-based B2S2 and Voronoi-
based VS2 outperform the best competitor approach in terms
of processing time by a wide margin (4-6 times better in
most cases).

1. INTRODUCTION
Assume that the members of a multidisciplinary task force

∗This research has been funded in part by NSF grants EEC-
9529152 (IMSC ERC), IIS-0238560 (PECASE), IIS-0324955
(ITR), and unrestricted cash gifts from Google and Mi-
crosoft. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the au-
thor(s) and do not necessarily reflect the views of the Na-
tional Science Foundation.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘06, September 12-15, 2006, Seoul, Korea.
Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09.

team located at different (fixed) offices want to put together
a list of restaurants for their weekly lunch meetings. These
meeting locations must be interesting in terms of traveling
distances for all the team members; for each restaurant r in
the list, no other restaurant is closer to all members than r.
That is, there exists no better restaurant of choice than an
interesting restaurant in terms of all of their comparable at-
tributes (here, distances to team members). Generating this
list becomes even more challenging when the team members
are mobile and change location over time.

Suppose the information about all restaurants are stored
in a database as objects with static attributes (e.g., rating of
the restaurant). The database literature refers to the inter-
esting objects with respect to their static attributes as sky-
line objects of the database; those that are not dominated by
any other object. These static skyline objects depend only
on the database itself (and the definition of the interest-
ing object). Even though the interesting restaurants to our
team members can also be considered as the skyline of the
database of restaurants, there are two major distinctions:
1) The restaurants’ distance attributes based on which the
domination is defined are dynamically calculated based on
the user’s query (i.e., location of the team members). Con-
sequently, the result depends on both data and the given
query. 2) As these attributes are spatial, there is a unique
corresponding geometric interpretation of spatial skyline in
the space of the objects.

The query retrieving the set of interesting restaurants in
our motivating example belongs to a broader novel type of
spatial queries. In this paper, for the first time, we intro-
duce the concept of these Spatial Skyline Queries (SSQ).
Given a set of data points P and a set of query points Q
in a d-dimensional space, an SSQ retrieves those points of
P which are not dominated by any other point in P con-
sidering a set of spatial derived attributes. For each data
point, these attributes are its distances to query points in
Q. An interesting variation, which is also studied in this pa-
per, is where the domination is determined with respect to
both spatial and non-spatial attributes of P . Besides online
map services and group navigation/planning, SSQ is criti-
cal for many applications. In the domain of trip planning,
the spatial skyline of hotels with respect to the fixed loca-
tions of conference venue, beaches and museums includes all
the interesting hotels for lodging during a business/pleasure
trip. No other hotel is closer than these hotels to all three
must-see locations. In crisis management domain, the res-
idential buildings that must be evacuated first in the event
of several explosions/fires are those which are in the spatial

751

skyline with respect to the fire locations. The reason is that
these places are either potentially trapped in the convex hull
of fires or located at the edges of the expanding fire. In de-
fense and intelligence applications, consider the locations of
soldiers penetrating into enemy’s camps as query locations
and the enemy’s guard stations as data points. The stations
in the spatial skyline are those from which an attack might
be initiated against the platoon of soldiers.

Since the introduction of the skyline operator by Börzsönyi
et al. [1], several efficient algorithms have been proposed
for the general skyline query. These algorithms utilize tech-
niques such as divide-and-conquer [1], nearest neighbor search
[6], sorting [2], and index structures [1, 10, 8] to answer the
general skyline queries. Several studies have also focused on
the skyline query processing in a variety of problem settings
such as data streams [7] and data residing on mobile devices
[5]. However, to the best of our knowledge, no study has ad-
dressed the spatial skyline queries. The most relevant work
is the BBS algorithm proposed by Papadias et al. [8], which
can be utilized to address SSQ by considering it as a special
case of dynamic skyline query. However, since BBS is ad-
dressing a more general problem, it overlooks the geometric
properties of SSQ and hence its performance is not optimal
in spatial domain. We compare our techniques with BBS in
Section 7.

Optimal processing of SSQs is more challenging than the
general skyline queries as each dominance check here re-
quires the computation of the dynamic distance attributes.
Notice that the algorithms for Group or Aggregate Nearest
Neighbor queries [9] are related but not applicable to SSQ
as they only find the optimal (best) object based on a fixed
preference function. Hence, they require no intermediate
dominance checks that are vital in processing SSQs.

In this paper, we approach the problem of processing SSQs
as a query in spatial domain from a geometric perspective.
First, we analytically exploit the geometric properties of the
problem and solution spaces. We theoretically prove that
unlike general skyline there are data points in P that are
definitely in the spatial skyline of P with respect to Q inde-
pendent of the rest of P . Likewise, there are query points
that have no impact on the inclusion/exclusion of any data
point in/from the skyline. Utilizing this theoretical foun-
dation, we propose two algorithms, B2S2 and VS2, for sta-
tic query points and one algorithm, VCS2, for streaming Q
whose points change location over time (e.g., are mobile).

The R-tree-based B2S2 is a customization of BBS [8] for
SSQ that benefits from our theoretical foundation by ex-
ploiting the geometric properties of the problem space. B2S2

is more efficient than BBS as it not only avoids expensive
dominance checks for definite skyline points but also prunes
unnecessary query points to reduce the cost of each exam-
ination. VS2, however, employs the Voronoi diagram and
Delaunay graph of the data points as a roadmap to find
the first skyline point whose local neighborhood contains
all other points of the skyline. The algorithm traverses the
nodes of the graph (i.e., data points of P) in the order spec-
ified by a monotone function over their distances to query
points. Similar to B2S2, VS2 also efficiently exploits the geo-
metric properties of the problem space while traversing the
Delaunay graph. VS2 reduces the complexity of the naive
SSQ search from O(|P |2|Q|) to O(|S|2|C|+ |P |), where |S|
and |C| are the solution size and the number of vertices of

the convex hull of Q, respectively. The |P | factor can be

reduced further to O(log |P |) if an index structure is used.
We comprehensively study the scenario where the query

points are the locations of multiple moving objects with un-
predefined trajectories. This occurs in our motivating appli-
cations when the team members are mobile agents or the
soldiers are moving. Here, we frequently receive the latest
query locations as spatial data streams. For each pattern of
movement, we extract the locus of all points whose domi-
nance change and hence trigger an update to the old spatial
skyline. Consequently, to address continuous SSQ we pro-
pose VCS2 that exploits the pattern of change in Q to avoid
unnecessary re-computation of the skyline and hence effi-
ciently perform updates.

Furthermore, we study a more general case of SSQ where
one intends to find the skyline with respect to both static
non-spatial attributes of the data points and their distances
to query points. For instance, the best restaurant in LA
might be dominated in terms of distance to our team mem-
bers but it is still in the skyline because of its rating. We
show that B2S2, VS2, and VCS2 all can support this varia-
tion of SSQ as well.

Finally, through extensive experiments with both real-
world and synthetic datasets, we show that B2S2, VS2, and
VCS2 can efficiently answer an SSQ query. Both R-tree-
based B2S2 and Voronoi-based VS2 outperform the best
competitor approach BBS in terms of processing time by
a wide margin (up to 6 times better). Our experimental
results with synthetically moving objects verify that on av-
erage for 3-10 query points only less than 25% of movements
require the entire skyline to be recomputed. For the other
75% of movements, VCS2 outperforms VS2 by a factor of 3
which makes it the superior algorithm for continuous SSQ.

The remainder of this paper is organized as follows. We
first formally define the problem of SSQs and the terms we
use throughout the paper in Section 2. In Section 3, we
establish the theoretical foundation of our proposed algo-
rithms. In Section 4, we discuss our alternative solutions
for SSQ. We address continuous SSQ for moving objects
and incorporating non-spatial attributes in SSQ in Sections
5 and 6, respectively. The performance of our proposed al-
gorithms is evaluated in Section 7. The related work to
SSQ and similar nearest neighbor queries are presented in
Section 8. Finally, we conclude the paper and discuss our
future work in Section 9.

2. FORMAL PROBLEM DEFINITION
Assume that we have a database of N objects. Each data-

base object p with d real-valued attributes can be concep-
tualized as a d-dimensional point (p1, . . . , pd) ∈ R

d where pi

is the i-th attribute of p. We use P to refer to the set of all
these points. Figure 1a illustrates a database of six objects
P = {a, b, c, d, e, f} each representing the description of a
hotel with two attributes: distance to beach and price. Fig-
ure 1b shows the corresponding points in the 2-dimensional
space where x and y axes correspond to the range of at-
tributes distance and price, respectively. Throughout the
paper, we use point and object interchangeably to refer to
each database object. In the following sections, we first
define the general skyline query using the above database
conceptualization. Then, we introduce our spatial skyline
query based on the definition of the general skyline query.

2.1 General Skyline Query
Given the two points p=(p1, . . . , pd) and p′=(p′

1, . . . , p
′
d)

752

object distance price
(mile) ($)

a 0.5 200

b 2 150

c 2.5 25

d 4 125

e 1.5 100

f 3 75

price

50

100

150

200

1 2 3 4

distance to beach

a

b

d
e

c

f

(a) (b)

Figure 1: A 2-dimensional database of six objects

in R
d, p dominates p′ iff we have pi ≤ p′

i for 1 ≤ i ≤ d and
pj < p′

j for some 1 ≤ j ≤ d. To illustrate, in Figure 1b
the point f=(3, 75) dominates the point d=(4, 125). Now,
given a set of points P , the skyline of P is the set of those
points of P which are not dominated by any other point in
P . The skyline of the points shown in Figure 1b is the set
S = {a, c, e}. The Skyline Query is to find the skyline set of
the given database P considering attributes of the objects in
P as dimensions of the space. Notice that every point of the
skyline does not need to dominate a point of P . For instance
in Figure 1b, while the points c and e each dominate two
other points, the point a dominates no point.

2.2 Spatial Skyline Query
Let the set P contain points in the d-dimensional space

R
d, and D(., .) be a distance metric defined in R

d where
D(., .) obeys the triangle inequality. Given a set of d-dimensional
query points Q={q1, . . . , qn} and the two points p and p′ in
R

d, p spatially dominates p′ with respect to Q iff we have
D(p, qi) ≤ D(p′, qi) for all qi ∈ Q and D(p, qj) < D(p′, qj)
for some qj ∈ Q. To be specific, p spatially dominates p′ iff
every qi is closer to p than to p′ or at the same distance from
p and p′. Figure 2 shows a set of nine 2-d points and two
query points q1 and q2. With Euclidean distance metric, the
point p spatially dominates the point p′ as both q1 and q2

are closer to p than to p′. Note that if we draw the perpen-
dicular bisector line of the line segment pp′, q1, q2, and p will
be located on the same side of the bisector line (where p′ is
not; see Figure 2). We use this geometric interpretation of
the spatial dominance relation between two points in Section
3.2 to justify the foundation of our proposed algorithms.

For each point p, consider circles C(qi, p) centered at the
query point qi with radius D(qi, p). Obviously, qi is closer
to any point inside C(qi, p) than to p. Therefore, by the
above definition any point such as p′′ which is inside the
intersection of all C(qi, p) for all qi ∈ Q spatially dominates
p. We call this intersection area which potentially includes
all the points which spatially dominate p as the dominator
region of p. Similarly, the locus of all points such as p′ which
are spatially dominated by p is the intersection of outside
of all circles C(qi, p) (the grey region in Figure 2)1. For a
point p, we refer to this region as the dominance region of
p.

Given the two sets P of data points and Q of query points,
the spatial skyline of P with respect to Q is the set of those
points in P which are not spatially dominated by any other
point of P ; the points which are not inside the dominance
region of any other point. The point p ∈ P is in the spatial

1Assume that the large rectangle shows the universe space
of the data points.

Dominance region of pC(q
1
, p)

p

q
1

q
2

p'

p''

D
o
m

in
a

to
r

re
g
io

n
 o

f
p

Bisector line

of pp'

p'''

Figure 2: The spatial skyline of a set of nine points

Symbol Meaning
P set of database points
N |P |, cardinality of P
D(., .) distance function in P
Q set of query points {q1, . . . , qn}
n |Q|, cardinality of Q
C(qi, p) circle centered at qi with radius D(qi, p)
V C(p) Voronoi cell of p
CH(Q) convex hull of Q
CHv(Q) set of vertices of CH(Q)
S(Q) spatial skyline points of P with respect to Q

Table 1: Summary of notations

skyline of P with respect to Q iff for any point p′ ∈ P there is
a query point qi ∈ Q for which we have D(p, qi) ≤ D(p′, qi).
That is, p is in the spatial skyline iff we have:

∀p′ ∈ P, p′ �= p, ∃qi ∈ Q s.t. D(p, qi) ≤ D(p′, qi) (1)

We use spatial skyline point and skyline point interchange-
ably to denote any point in the spatial skyline. Considering
the above definitions, the Spatial Skyline Query (SSQ) is to
find the spatial skyline points of the given set P with respect
to the query set Q.

The naive brute-force search algorithm for finding the spa-
tial skyline of P given a query set Q requires to examine
all points in P against each other. For each point p, |Q|
distances D(p, qi) are computed and compared against the
corresponding distances of other points. If no point spa-
tially dominates p, then p is added to the solution. The
time complexity of this naive algorithm is O(|P |2|Q|) as it
exhaustively examines all data points against each other.

However, an optimal SSQ algorithm must examine each
point p against only those points which are inside the dom-
inator region of p. In Section 3, we establish the theoretical
foundation of our efficient SSQ algorithms which allows us
to avoid a significant number of distance computations of
the naive approach.

3. FOUNDATION
We first identify the geometric structure of the solution

space corresponding to the SSQ problem. In particular, we
intend to understand how the spatial skyline points of a
given query are related to the data and query points. These
relationships constitute the foundation of our proposed so-
lutions to SSQ. To start, we first describe three geometric
structures utilized by our solutions, namely Voronoi dia-
gram, Delaunay graph, and convex hull. Notice that while
throughout the paper we use Euclidean distance function in
2-d space, our results hold in general for any dimension d.

3.1 Preliminaries

3.1.1 Voronoi Diagram and Delaunay Graph
The Voronoi diagram of a given set P of points in R

d

partitions the space into regions each including all points
with a common closest point in P according to a distance

753

p

VC(p)

V. neighbor of p V. edge of p

V
.

ve
rt

ex
 o

f
p

p

p'

Convex HullConvex point

p'

p

(a) (b) (c)

Figure 3: a) Voronoi diagram, b) Delaunay graph, and c) Convex hull

metric D(., .) [3].The region corresponding to the point p ∈
P contains all the points x ∈ R

d for which we have

∀p′ ∈ P, p′ �= p, D(x, p) ≤ D(x, p′) (2)

The equality holds for the points on the borders of p’s and
p′’s regions. Figure 3a shows the Voronoi diagram of nine
points in R

2 where the distance metric is Euclidean. We re-
fer to the region V C(p) containing the point p as its Voronoi
cell. For Euclidean distance in R

2, V C(p) is a convex poly-
gon. Each edge of this polygon is a segment of the per-
pendicular bisector line of the line segment connecting p to
another point of the set P . We call each of these edges a
Voronoi edge and each of its end-points (vertices of the poly-
gon) a Voronoi vertex of the point p. For each Voronoi edge
of the point p, we refer to the corresponding point in the set
P as a Voronoi neighbor of p.

Now consider an undirected graph G(V, E) with the set of
vertices V = P . For each two points p and p′ in V , there is
an edge connecting p and p′ in G iff p′ is a Voronoi neighbor
of p in the Voronoi diagram of P . The graph G is called the
Delaunay Graph of points in P . Figure 3b illustrates the
Delaunay graph corresponding to points of Figure 3a. The
Delaunay graph of any set of points is a connected planar
graph. In Section 4.2, we traverse the Delaunay graph of
the database points to find the set of skyline points.

3.1.2 Convex Hull
The convex hull of points in P ⊂ R

d, is the unique smallest
convex polytope (polygon when d = 2) which contains all
the points in P [3]. Figure 3c shows the convex hull of the
points of Figure 3a as a hexagon. The set of vertices of
convex hull of points in P is a subset of P . We use convex
point to denote any of these vertices and non-convex point
to refer to all other points of P . In Figure 3c, p′ and p
are convex and non-convex points, respectively. We also use
CH(P) and CHv(P) to refer to the convex hull of P and
the set of its vertices, respectively. It is clear that the shape
of the convex hull of a set P only depends on the convex
points in P . Consequently, the location of any non-convex
point p ∈ P does not affect the shape of CH(P).

3.2 Theories
We assume that the set of data points P and query points

Q are given. In this section, we exploit the geometric prop-
erties of spatial skyline points of P with respect to Q. To
reduce our search space in finding spatial skyline points, we
prove one lemma (1) and two theorems (1 & 3) that would
help us to immediately identify definite skyline points and
one theorem (2) to eliminate some of the query points not
contributing to the search. The first property holds for both
general and spatial skylines.

Lemma 1. For each qi ∈ Q, the closest point to qi in P
is a skyline point.

Proof. If p is the closest point to qi in P , we have
D(p, qi) < D(p′, qi) for all p′ ∈ P (p′ �= p). By definition,
no point in P spatially dominates p. Hence, p is a skyline
point.

A restated form of Lemma 1 is valid for the general skyline
where all the points with the minimum value in one dimen-
sion are in the skyline. Lemma 1 shows that the inclusion
of some data points in the spatial skyline of P does not de-
pend on the location of any other point of P . For example
in Figure 2, the point p′′′ is a skyline point as it is the clos-
est point to the query point q1. It is a skyline point only
because of q1’s location regardless of where the other data
points of P are located. In Section 4.2, we utilize Lemma 1
to start our search for skyline points from a definite skyline
point such as p′′′. The following theorem also shows that
specific points in P are skyline points independent of the
locations of other points of P .

Theorem 1. Any point p ∈ P which is inside the convex
hull of Q is a skyline point.

Proof. The proof is by contradiction. Assume that p
which is inside the convex hull CH(Q) is not a skyline point
(see Figure 4a). Then, there is a point p′ ∈ P which spa-
tially dominates p. Therefore, if we draw the perpendicular
bisector line of the line segment pp′, all the query points qi

will be located on the same side of the line where p′ is lo-
cated. Hence, CH(Q) is also on the same side as p′. That is,
the perpendicular bisector line of pp′ separates CH(Q) from
p. This contradicts our assumption that p is inside CH(Q)
and proves that p is a skyline point.

Theorem 1 enables our SSQ algorithms to efficiently retrieve
a large subset of skyline points only by examining them
against the query points. This theorem is the basis of our
proposed SSQ algorithms in Section 4. The next theorem
improves the application of Theorem 1 by proving that even
some of the query points have no impact on the final spatial
skyline. Hence, our SSQ algorithms can easily ignore them.
We first prove the following lemma:

Lemma 2. Given two query sets Q′ ⊂ Q, if a point p ∈ P
is a skyline point with respect to Q′, then p is also a skyline
point with respect to Q.

Proof. As p is a skyline point with respect to Q′, for
any point p′ ∈ P there is a query point qi ∈ Q′ for which we
have D(p, qi) ≤ D(p′, qi) (see Equation 1). As Q′ is a subset
of Q, we have qi ∈ Q. Therefore, according to Equation 1
the point p is a skyline point with respect to Q.

754

p

q
1

q
2

q
3

p'

Bisector line

of pp'

p

q
1

q

q
3

p'

q
2

B
isecto

r
lin

e
o
f
p
p

' p
q

1

q
2

q
3

p'

q
4

'
(a) (b) (c)

Figure 4: a) Theorem 1, b) Theorem 2, and c) Theorem 3

Lemma 2 holds for both general and spatial skylines. In the
general case, if a point p is in the skyline considering only a
subset of its coordinates (i.e., attributes), it remains in the
final skyline when all coordinates of p are considered.

Theorem 2. The set of skyline points of P does not de-
pend on any non-convex query point q ∈ Q.

Proof. Assume that the query point q is not a convex
point (i.e., q /∈ CHv(Q)) (see Figure 4b). Consider the set
Q′ = Q − {q}. We prove that the spatial skylines of Q and
Q′ are equal (i.e., S(Q′) = S(Q)). First, assume that p is a
skyline point with respect to Q′ (i.e., p ∈ S(Q′)). According
to Lemma 2, as we have Q′ ⊂ Q, p is a skyline point with
respect to Q.

Now, we assume that we have p ∈ S(Q). We show that
p ∈ S(Q′). The proof is by contradiction. Assume that p
is not in S(Q′). Then, there is a point such as p′ ∈ P that
spatially dominates p with respect to Q′. By definition, the
query points in Q′ and the point p are on different sides
of the perpendicular bisector line of line segment pp′; Q′

is on the same side as p′. Therefore, the convex hull of Q′,
CH(Q′), and p are separated by the bisector line. Moreover,
as q is not a convex point of Q, we have CH(Q) = CH(Q′).
Hence, CH(Q) is also separated from p by the bisector line.
That is, p′ spatially dominates p with respect to both Q′ and
Q and so we get p /∈ S(Q) which contradicts our assumption.
Therefore, we showed that p ∈ S(Q′).

Combining all the above, we proved that S(Q′) = S(Q)
and hence the inclusion/exclusion of the single non-convex
query point q in/from Q does not change the set of skyline
points of P .

To illustrate, consider the point q inside the convex hull
of query points shown in Figure 4b. Theorem 2 implies that
both dominance and dominator regions of any point p is
independent from q. The intuition here is that the circle
C(q, p) is completely inside the union of the circles C(qi, p)
for qi ∈ CHv(Q). With the result of Theorem 2, we reduce
the time complexity of our SSQ algorithms by disregarding
the distance computation operations against the non-convex
query points such as q (see Section 4). Finally, the last
theorem specifies those skyline points which are identified by
examining only the data points in a limited local proximity
around them.

Theorem 3. Any point p ∈ P whose Voronoi cell V C(p)
intersects with the boundaries of convex hull of Q is a skyline
point.

Proof. The proof is by contradiction. Assume that the
Voronoi cell of p intersects with CH(Q) but p is not a skyline
point (i.e., p /∈ S(Q)) (see Figure 4c). Hence, a point such as
p′ ∈ P spatially dominates p with respect to Q. Therefore,

Algorithm B2S2 (set Q)
01. compute the convex hull CH(Q);
02. set S(Q) = {};
03. box B = MBR(R);
04. minheap H = {(R, 0)};
05. while H is not empty
06. remove first entry e from H;
07. if e does not intersect with B, discard e;
08. if e is inside CH(Q) or
09. e is not dominated by any point in S(Q)
10. if e is a data point p
11. add p to S(Q);
12. B = B ∩ MBR(SR(p, Q));
13. else // e is an intermediate node
14. for each child node e′ of e
15. if e′ does not intersect with B, discard e′;
16. if e′ is inside CH(Q) or
17. e′ is not dominated by any point in S(Q)
18. add (e′, mindist(e′, CHv(Q))) to H;
19. return S(Q);

Figure 5: Pseudo-code of the B2S2 algorithm

the perpendicular bisector line of line segment pp′ separates
both p′ and Q from p. That is, p and the convex hull of Q
are on different sides of the bisector line. As V C(p) inter-
sects with CH(Q), the intersection of V C(p) and CH(Q)
is also separated from p by the bisector line. It means that
the points in this intersection region are closer to p′ than to
p. That is, there are some points such as x inside V C(p)
for which we have D(x, p′) < D(x, p). This inequality con-
tradicts the definition of V C(p) given in Equation 2 which
states that any point in V C(p) is closer to p than to any
other point in the set P . Thus, p is a skyline point with
respect to Q.

4. SOLUTIONS
In this section, we propose two algorithms to solve the

SSQ problem. Both algorithms are empowered by the foun-
dation established in Section 3; they utilize Lemma 1 and
Theorems 1 and 3 to eliminate unnecessary dominance checks
for the definite skyline points and Theorem 2 to prune some
of query points.

4.1 B2S2: Branch-and-Bound Spatial Skyline
Algorithm

Our B2S2 algorithm is an improved customization of the
original BBS algorithm for “spatial skyline” [8]. Similar to
[8], we assume that the data points are indexed by a data-
partitioning method such as R-tree. For each data point p,
let mindist(p, A) be the sum of distances between p and the
points in the set A (i.e., q∈A D(p, q)). Likewise, we define

mindist(e, A) as the sum of minimum distances between the
rectangle e and the points of A (i.e., q∈A mindist(e, q)).

Figure 5 shows the pseudo-code of B2S2. We describe the
algorithm using the set of data points P = {p1, . . . , p13} and
query points Q = {q1, . . . , q4} shown in Figure 6. Each in-
termediate entry ei in the corresponding R-tree represents

755

the minimum bounding box of the node Ni. B2S2 starts
by computing the convex hull of Q and determines the set
of its vertices CHv(Q) (e.g., CHv(Q) = {q1, q2, q3}). Sub-
sequently, B2S2 begins to traverse the R-tree from its root
R down to the leaves. It maintains a minheap H sorted
based on the mindist values of the visited nodes. Table 2
shows the contents of H at each step. First, B2S2 inserts
(e6, mindist(e6, CHv(Q))) and (e7, mindist(e7, CHv(Q))) cor-
responding to the entries of the root R into H. Then, e6 with
the minimum mindist is removed from H and its children
e1, e2, and e3 together with their mindist values are inserted
into H. Similarly, e1 is removed and the children of e1 are
added to H. In the next iteration, the first entry p2 is inside
CH(Q) and hence is added to S(Q) as the first skyline point
found.

Once the first skyline point is found (i.e., S(Q) �= ∅), any
entry e must be checked for dominance before insertion into
and after removal from H. If e is dominated by a skyline
point p, then B2S2 discards e. This dominance check is
done against all points p in S(Q); e is dominated by p if e is
completely inside the dominance region of p (see Section 2.2
for the definition). That is, if e does not intersect with any
circle C(q, p) for q ∈ CHv(Q). To decrease the use of this
costly test, B2S2 first applies two easier tests: 1) If the entry
e does not intersect with the MBR of the union of all circles
C(q, p) (termed as SR(p, Q)), then p dominates e. Similarly,
if e does not intersect with the intersection of all such MBRs
each corresponding to a current skyline points in S(Q), then
a point in S(Q) dominates e. 2) If e is completely inside the
convex hull CH(Q), e cannot be dominated (see Theorem
1). If e does not pass any of the above tests, B2S2 requires
to check e against the entire S(Q).

B2S2 maintains the rectangle B corresponding to the in-
tersection area described above and updates it when a new
skyline point is found (see dotted box in Figure 6). Con-
sidering our example, B2S2 removes p3 from H. As p3 is
inside B and is not dominated by p2, it is added to the sky-
line points and the rectangle B is updated accordingly (lines
11-12 in Figure 5). The next step examines e2 which is not
dominated by current skyline points p2 and p3. Among e2’s
children, only p5 is inserted to H. p4 is outside B (i.e., dom-
inated by p3) and hence is discarded. Then, B2S2 removes
e7 and extracts its children e4 and e5 as e7 is not dominated.
Entry e4 does not intersect with B and e5 is dominated by
p2. Hence, B2S2 discards both entries. At this step, p5 is
removed and added to the skyline points. The remaining
steps discard both dominated entries p1 and e3. Finally, the
points p2, p3 and p5 consist the final spatial skyline.

4.1.1 B2S2 Correctness
The correctness of B2S2 follows that of BBS as both algo-

rithms use the same approach to explore the solution space.
B2S2 benefits from all the properties of BBS. For instance,
B2S2 can also utilize any arbitrary monotone function in-
stead of mindist() to sort the entries of its heap. Conse-
quently, B2S2 is also able to employ any monotone prefer-
ence function to support ranked skyline queries [8].

However, B2S2 is more efficient than BBS as it reduces
the complexity of the costly dominance checks. 1) B2S2

uses only the query points on the convex hull of Q instead
of the entire Q (Theorem 2) which decreases the number of
distance computations during dominance checks. In most
cases, B2S2 requires |CHv(Q)| < |Q| operations to compute
distances of each point. 2) B2S2 utilizes the rectangle B to

9

3

2

1

54

6

7

3

8

10

12

13

111

2

3
7

6

4

5

2

1

4

p
1

e
1

N
4

N
5

N
3

N
2

N
1

N
7

N
6

R

e
3

e
4

e
5

e
2

e
6

e
7

p
2

p
3

p
4

p
5

p
8

p
7

p
6

p
10

p
9

p
11

p
12

p
13

Figure 6: Points indexed by an R-tree

step heap contents (entry e: mindist(., .)) S(Q)
1 (e6 : 8), (e7 : 52) ∅

2 (e1 : 18), (e2 : 49), (e7 : 52), (e3 : 115) ∅

3 (p2 : 38), (p3 : 42), (e2 : 49), (e7 : 52), ∅

(p1 : 70), (e3 : 115)
4 (e7 : 52), (p5 : 53), (p1 : 70), (e3 : 115) {p2, p3}
5 (p5 : 53), (p1 : 70), (e3 : 115) {p2, p3}
6 (p1 : 70), (e3 : 115) {p2, p3, p5}

Table 2: B2S2 for the example of Figure 6

facilitate the pruning of dominated rectangular entries from
O(|Q|(d2+|S(Q)|)) to O(d2). Instead of computing the min-
imum distances between e and each q ∈ Q and comparing
them against those of each skyline point in S(Q), B2S2 first
checks whether e and B intersect. 3) B2S2 does not require
any dominance check for points inside CH(Q) (Theorem 1).
Moreover, B2S2 utilizes Theorem 3 to precede its expensive
dominance checks with an intersection check between the
Voronoi cell V C(p) and CH(Q) when the later is cheaper
(e.g., when |S(Q)| and |Q| are large comparing to CHv(Q)
and the number of vertices of V C(p)).

4.2 VS2: Voronoi-based Spatial Skyline Algo-
rithm

According to Theorems 1 and 3, the points whose Voronoi
cells are inside or intersect with the convex hull of the query
points are skyline points. Therefore, our VS2 algorithm uti-
lizes the Voronoi diagram (i.e., the corresponding Delaunay
graph) of the data points to answer an SSQ problem. We
assume that the R-tree on the data points does not exist.
Instead, the Voronoi neighbors of each data point is known.
To be specific, the adjacency list of the Delaunay graph of
the points in P is stored in a flat file. To preserve local-
ity, points are organized in pages according to their Hilbert
values.

VS2 starts traversing the Delaunay graph from a data
point (e.g., NN(q1), the closest point to q1). The traversal
order is determined by the monotone function mindist(p,
CHv(Q)). VS2 maintains two different lists to track the
traversal; Visited which contains all visited points and Ex-
tracted which contains those visited points whose Voronoi
neighbors have also been visited (extracted). Similar to
B2S2, VS2 also maintains the rectangle B which includes
all candidate skyline points.

Figure 7 shows the pseudo-code of VS2. It first computes
the convex hull of query points and initializes all the data
structures. Then, the closest point to one of the query points

756

Algorithm VS2 (set Q)
01. compute the convex hull CH(Q);
02. set S(Q) = {};
03. Heap H = {(NN(q1), mindist(NN(q1), CHv(Q)))};
04. set V isited = {NN(q1)}; set Extracted = {};
05. box B = MBR(SR(NN(q1), Q));
06. while H is not empty
07. (p, key) = first entry of H;
08. if p ∈ Extracted
09. remove (p, key) from H;
10. if p is inside CH(Q) or
11. p is not dominated by S(Q)
12. add p to S(Q);
13. B = B ∩ MBR(SR(p′, Q));
14. else
15. add p to Extracted;
16. if S(Q) = ∅ or a Voronoi neighbor of p is in S(Q)
17. for each Voronoi neighbor of p such as p′
18. if p′ ∈ V isited, discard p′;
19. if p′ is inside B or V C(p′) intersects with B
20. add p′ to V isited;
21. add (p′, mindist(p′, CHv(Q))) to H;
22. return S(Q);

Figure 7: Pseudo-code of the VS2 algorithm

3

2

1
1

3

2

56

4

9

8

7

10

11

Figure 8: Example points for VS2

(e.g., p = NN(q1)) and its corresponding entry (p, mindist(p,
CHv(Q))) are added to V isited and minheap H, respec-
tively. Then, VS2 iteratively examines (p, key), the top en-
try of H. If all p’s Voronoi neighbors have been already vis-
ited (i.e., p ∈ Extracted), then (p, key) is removed from H.
Subsequently, if p is not dominated by current S(Q), then p
is added to S(Q) as a skyline point. If p /∈ Extracted, p is
added to Extracted. Moreover, if at least one of the skyline
points identified so far is a Voronoi neighbor of p, then VS2

adds each unvisited Voronoi neighbor p′ of p to V isited and
H iff a) p′ is inside current rectangle B or b) p′’s Voronoi cell
V C(p′) intersects with B. Subsequently, B is updated ac-
cordingly and the entry (p′, mindist(p′, CHv(Q))) is added
to the heap H. Finally, when H becomes empty, VS2 returns
S(Q) as the result.

We describe VS2 using the example shown in Figure 8.
The three query points qi and the data points are shown as
white and black dots, respectively. Table 3 shows the con-
tents of heap H. First, VS2 adds (p1, midist(p1, CHv(Q)))
to H and marks p1 as visited. B is also initialized accord-
ingly to the dotted box in Figure 8. The first iteration visits
p3, p4, p5, p6, and p8 as p1’s Voronoi neighbors and adds
their corresponding entries to H. It also adds p1 to the
Extracted list. The second iteration removes p1 from H as
p1 and its neighbors have been already visited. It also adds
p1 to S(Q) as p1 is inside CH(Q). The third iteration adds
p9, p10, and p11 as the only unvisited neighbors of p3 which
are inside B to H. The next two iterations immediately
remove p3 and then p6 from H and add them to S(Q) as
their neighbors have been already visited. The subsequent

iterations add p5, p4, and p2 to the skyline and eliminate
the remaining entries of H as they are all dominated.

4.2.1 VS2 Correctness

Lemma 3. Given a query set Q, VS2 first adds the data
points inside CH(Q) to the skyline S(Q). All other points
are examined and added to S(Q) in ascending order of their
mindist() values.

Proof. We first show that p0, the first data point added
to S(Q), is inside CH(Q) if there is at least one point inside
CH(Q).

The traversal of Delaunay graph once started from point
NN(q1) is towards the point with smaller mindist. The
reason is that the mindist of the top entry of H is always
decreasing before p0 being added to S(Q). It is clear that
the mindist of any point inside CH(Q) is smaller than those
of the points outside CH(Q). Hence, after a few iterations,
the top entry of H becomes a point inside CH(Q). Then
during the next iterations, the point whose mindist is less
than those of all of its neighbors is added as the first point to
S(Q). As mindist is monotone with respect to the distance
to each query point qi, this happens only inside CH(Q).
Therefore, p0 is inside CH(Q). If there is no point inside
CH(Q) then V C(p0) intersects with CH(Q). Once p0 is
added, all other points inside CH(Q) are added to S(Q)
as their mindist are smaller than those of outside points.
Finally, as the pseudo-code of VS2 shows, subsequent itera-
tions always examine and add the top entry of H which has
the minimum mindist to S(Q). Hence, the non-dominated
data points outside CH(Q) are added to S(Q) in the as-
cending order of their mindist.

Lemma 4. Given a query set Q, VS2 identifies all spatial
skyline points with respect to Q.

Proof. We provide only the sketch of the proof. It is
clear that VS2 examines all the data points except those
that either their Voronoi cells are outside the rectangle B or
none of their already-visited Voronoi neighbors has a skyline
neighbor. The first group of points are inside the domina-
tor region of one of the visited points and hence need to be
discarded. The second group of points are obviously out-
side CH(Q) and the Voronoi cell of none of their Voronoi
neighbors intersects with CH(Q). These neighbors are all
dominated. Voronoi neighbors of these neighbors are also
dominated and hence do not intersect with CH(Q). The
two layer of dominated Voronoi neighbors around such a
point p guarantees that p is also dominated by a point which
dominates one of these neighbors.

Similar to B2S2, VS2 utilizes our foundation described
in Section 3 to efficiently reduce the number of dominance
checks. The number of data points visited by VS2 is much
less than those inside rectangle B. The reason is that VS2

usually stops its traversal earlier than reaching the bound-
aries of B.

The time complexity of VS2 is O(|S(Q)|2|CHv(Q)| +
Φ(|P |)) where Φ(|P |) is the complexity of finding the point
from which VS2 starts visiting inside CH(Q) (e.g., NN(q1)).
If VS2 utilize an index structure, then Φ(|P |) is O(log |P |).
Otherwise, As the Delaunay graph of P is connected, VS2

starts from a random point and keeps visiting the neigh-
boring point closest to q1 until it reaches q1. For a uni-
formly distributed P in a square-shaped area, this takes
Φ(|P |) = O(|P |/2) steps.

757

step heap contents (point p: mindist(., .)) S(Q)
1 (p1 : 24) ∅

2 (p1 : 24), (p3 : 28), (p6 : 32), (p5 : 34), ∅

(p4 : 38), (p8 : 44)
4 (p3 : 28), (p6 : 32), (p5 : 34), (p4 : 38) {p1}

(p8 : 44), (p9 : 49), (p10 : 49), (p11 : 63)
6 (p6 : 32), (p5 : 34), (p4 : 38), (p8 : 44), {p1, p3}

(p7 : 46), (p9 : 49), (p10 : 49), (p11 : 63)
8 (p5 : 34), (p4 : 38), (p8 : 44), (p7 : 46), {p1, p3, p6}

(p9 : 49), (p10 : 49), (p11 : 63)
... ... {p1, p3, p6,

p5, p4, p2}

Table 3: VS2 for the example of Figure 8

5. CONTINUOUS QUERY
The algorithms proposed in the previous sections are ap-

propriate for the applications where the query points in Q
represent the locations of some stationary objects. Hence,
the spatial skyline of the data points P with respect to Q
once found is not changing. Now consider the scenario in
which each query point qi represents the location of a mov-
ing object in the space of R

2. All moving objects frequently
report their latest locations. Consequently, we gradually
receive the new location of each object as a spatial data
stream. Arrival of each new location causes an update to a
single point of Q. We intend to maintain the spatial skyline
of P with respect to the set of latest locations of all objects
(i.e., the current query set Q).

Upon an update to Q, one can always rerun an SSQ al-
gorithm to return the new set of skyline points. However,
this approach is expensive specially with the R-tree-based
algorithms such as B2S2 and BBS where the entire R-tree
must be traversed per each update. These algorithms can-
not tolerate updates for a fast rate data stream.

A smarter solution is to update the set of previously found
skyline points when a query point q moves. With B2S2 and
BBS, this still requires a complete traversal of R-tree and
examining all candidate data points. However, a more effi-
cient approach must examine only those data points which
may change the spatial skyline according to q’s new loca-
tion. In the following, we first identify the subset of query
points on which the dominance of a data point p depends.
Then, we prove Lemma 6 which states that q affects the
dominance of p iff p is in the line-of-sight of q. That is,
the line segment pq does not intersect with the interior of
CH(Q). We term visible region of q to refer to the locus
of all such points p. Finally, in Section 5.1 we identify the
points which may change the skyline for different moves of
q and propose our algorithm for continuous SSQ. The algo-
rithm utilizes Lemma 6 to choose the data points that must
be examined when the location of q changes.

First, we find the query points which may change the dom-
inance of a data point outside CH(Q). Consider the data
point p and query points Q = {q1, . . . , q4} in Figure 9. The
two tangent lines from p to CH(Q), divide the vertices in
CHv(Q) into two disjoint sets CH+

v (Q) = {q1, q2, q3} and
CH−

v (Q) = {q4}. The sets CH+
v (Q) and CH−

v (Q) include
the vertices on the closer and farther hulls of the convex hull
CH(Q) to p, respectively. The following lemma proves that
only the query points in the closer hull to p can change the
dominance of p.

Lemma 5. Given a data point p and a query set Q, the
dominance of p only depends on the query points in CH+

v (Q).

Proof. Suppose a point p′ dominates p with respect to

p

q
4

q
1q

3

L
1

L
2

q
2

Figure 9: Visible region of q1 ∈ CH(Q)

CH+
v (Q). It is clear that the bisector line of pp′ which sepa-

rates p and CH+
v (Q) intersects with the tangent lines from p

to CH(Q). Hence, it also separates the entire CH(Q) from
p. Therefore, p is dominated with respect to Q too. The
proof of the reverse case is also similar. Therefore, p is (not)
dominated with respect to Q iff p is (not) dominated with
respect to CH+

v (Q). Hence, the dominance of p depends
only on CH+

v (Q) (not CH−
v (Q)).

Lemma 5 states that the dominator region of p does not
depend on q /∈ CH+

v (Q). That is, this region is not changed
by the circle C(q, p) if q ∈ CH−

v (Q). Figure 9 illustrates this
case where the dotted circle C(q4, p) does not contribute to
the dominator region of p.

Utilizing Lemma 5, we easily find the locus of all points
whose dominance depends on the location of a given query
point. Consider q1 in the example shown in Figure 9. The
lines L1 and L2 pass through the line segments q1q2 and
q1q3, respectively (q2 and q3 are immediate neighbors of
q1 on CH(Q)). Each line divides the space into two half
planes. The figure illustrates the half planes using arrows.
The union of the half planes which does not contain CH(Q)
(visible region of q1) is the locus of the data points whose
dominance does depend on q1. The reason is that for any
point such as p in this region, CH+

v (Q) does not contain q1

and hence according to Lemma 5 p’s dominance does not
depend on q1. The general statement of the above result
follows.

Lemma 6. The locus of data points whose dominance de-
pends on q ∈ CHv(Q) is the visible region of q.

5.1 Voronoi-based Continuous SSQ (VCS2)
Assume that the location of the query point q changes. We

use q′ and Q′ to refer to the new location of q and the new set
of query locations, respectively (Q′ = Q∪{q′}−{q}). In this
section, we propose our Voronoi-based Continuous Spatial
Skyline algorithm (VCS2). We show how VCS2 uses the
visible regions of q and q′ to partition the space into several
regions for each a specific update must be applied to the old
skyline. VCS2 is more efficient than the naive approach as
it avoids excessive unnecessary dominance checks.

The algorithm traverses the Delaunay graph of the data
points similar to VS2. It first computes CH(Q′), the convex
hull of the latest query set. Then, it compares CH(Q′) with
the old convex hull CH(Q). Depending on how CH(Q′)
differs from CH(Q), VCS2 decides to either traverse only
specific portions of the graph and update the old skyline
S(Q) or rerun VS2 and generate a new one. With the former
case, it tries to examine only those points on the graph whose
dominance changes because of q’s movement.

We now describe the situations where VCS2 updates the
skyline based on the change in CH(Q′). Later, we show how
the update is applied. We first enumerate different ways

758

q'
q

q

q'

+

q'

q q'

+

q q'

++

q

q'

q

(a) (b) (c) (d) (e) (f)

Figure 10: Change patterns of convex hull of Q when the location of q changes to q′

3

2

1

1

3

2

56

4

9

8

7

10

11

1

12
13

14

15

Figure 11: Example points for VCS2

that the convex hull of query points might change when a
query point q moves. Figures 10a-10f show only six change
patterns. Each figure illustrates a case where q’s location
changes to q′ (i.e., q moves to q′). The grey and the thick-
edged polygons show CH(Q) and CH(Q′), respectively. In
general, identifying the appropriate pattern by comparing
CH(Q) and CH(Q′) is not a straightforward task. There-
fore, VCS2 only tries to recognize specific simple patterns
I-V and subsequently updates the skyline accordingly as we
explain later. For all other change patterns such as pattern
f, it reruns VS2. For each of patterns I-V, specific portions
of the Delaunay graph must be traversed by VCS2:
Pattern I) CH(Q) and CH(q′) are equal as both q and
q′ are inside the convex hull. According to Theorem 2, the
skyline does not change and no graph traversal is required.
Patterns II-V) The visible regions of q ∈ CHv(Q) and
q′ ∈ CHv(Q′) together partition the space into six regions
(seven regions for pattern V). The intersection region of
CH(Q) and CH(Q′) contains data points which are in sky-
line with respect to both Q and Q′. Therefore, VS2 does
not traverse this portion of the Delaunay graph. The re-
gion labeled by “++” includes the points inside CH(Q′)
and outside CH(Q). According to Theorem 1, any point in
this region is a skyline point with respect to Q′ and hence
must be added to the skyline. The points in the regions
labeled by “+” might be skyline points and must be ex-
amined. The intuition here is that their dominator regions
have become smaller because of q’s movement. The regions
labeled by “−” contain the points whose dominator regions
have been expanded and hence might be deleted from the
old skyline. The points in the regions specified by “×” must
be examined for inclusion in or exclusion from the skyline
as their dominator regions have changed. Finally, neither q
nor q′ affects the dominance of the points in the unlabeled
white region. The reason is that this region is outside of the
visible regions of both q and q′ (Lemma 6).

For each pattern I-V, only the data points in the union
of the labeled regions might change the skyline. We use the
term candidate region to refer to this region. Once VCS2

identifies any of patterns I-V, it tries to update the sky-
line. The algorithm first assigns the old S(Q) to S(Q′). For
pattern I, VCS2 returns the same old skyline as it is still

valid. For patterns II-V, VCS2 starts traversing the De-
launay graph from the closest data point to q′. Similar to
VS2, it initializes the rectangle B and traverses the points
which are inside the intersection of the candidate region and
B ordered by their mindist values. At each iteration, if the
point with the minimum mindist has been dominated it is
deleted from S(Q′) otherwise it is added to S(Q′).

At the end, VCS2 evaluates the skyline S(Q′) and re-
moves all the points which are dominated by another point
in S(Q′). The reason behind this final check is to examine
the old skyline points which are not in the traversal range
of VCS2.

We show the effectiveness of VCS2 using the example of
Figure 11 where shows q′1 the new location of q1 in Fig-
ure 11. First, VCS2 computes the convex hull of Q′ =
{q′1, q2, q3} and compares it with CH(Q). The change pat-
tern matches pattern V in Figure 10. Therefore, the update
to S(Q) involves both insertion and deletion. Then, VCS2

initializes S(Q′) to the old S(Q) resulted from applying VS2

in Section 4.2 and rectangle B accordingly. It also adds
(p8, mindist(p8, CHv(Q′))) in to H where p8 is the closest
point to q′1, the new location of q1. Table 4 shows the con-
tents of the minheap H. The second iteration extracts p8

and adds all of its Voronoi neighbors except p1 in to H as
p1 is not in the candidate region of pattern V. Similarly,
p3 is extracted and all its neighbors except p4 is added in
to H. Next, as p3 is not dominated it remains in S(Q′).
The next two iterations add p8 and p10 to S(Q′). The sixth
iteration, visits p6, the only unvisited Voronoi neighbor of
p7 in B which is subsequently removed from S(Q′) as it is
dominated by p1 ∈ S(Q′). The final four iterations of VCS2

also eliminate remaining points in H as they are all dom-
inated. No point in the final skyline set is dominated and
hence VCS2 returns S(Q′) as the result. The above example
shows how VCS2 avoids dominance checks for points such
as p4 outside the candidate region of the identified change
pattern and p1 inside the convex hull of query points. This
proves VCS2’s superiority over the naive approach.

5.1.1 VCS2 Correctness
The correctness of VCS2 follows that of VS2. The intu-

ition is that VCS2 also examines all the candidate skyline
points. It also examines those old skyline points that are
now dominated with respect to the new query set Q′ and
removes them from the skyline.

6. NON-SPATIAL ATTRIBUTES
One might be interested to find the skyline with respect

to both static non-spatial attributes of the data points and
their distances to points of Q. For instance, the best restau-
rant in LA might be dominated in terms of distance to our
team members but it is still in the skyline considering its
rating. We show how B2S2, VS2, and VCS2 can support
this variation of SSQ. Let A be a subset of non-spatial at-

759

step heap contents S(Q′)
1 (p8 : 39) {p1, p3, p6,

p5, p4, p2}
2 (p3 : 32), (p8 : 39), (p10 : 42), (p7 : 50), {p1, p3, p6,

(p14 : 64), (p15 : 66) p5, p4, p2}
3 (p3 : 32), (p8 : 39), (p10 : 42), (p7 : 50), {p1, p3, p6,

(p9 : 51), (p12 : 52), (p11 : 60), (p14 : 64), p5, p4, p2}
(p15 : 66)

4 (p8 : 39), (p10 : 42), (p7 : 50), (p9 : 51), {p1, p3, p6,
(p12 : 52), (p11 : 60), (p14 : 64), (p15 : 66) p5, p4, p2}

5 (p10 : 42), (p7 : 50), (p9 : 51), (p12 : 52), {p1, p3, p6, p5
(p11 : 60), (p14 : 64), (p15 : 66) p4, p2, p8}

6 (p7 : 50), (p9 : 51), (p12 : 52), (p11 : 60), {p1, p3, p6, p5,
(p14 : 64), (p15 : 66) p4, p2, p8, p10}

7 (p6 : 41), (p7 : 50), (p9 : 51), (p12 : 52), {p1, p3, p6, p5,
(p11 : 60), (p14 : 64), (p15 : 66) p4, p2, p8, p10}

8 (p7 : 50), (p9 : 51), (p12 : 52), (p11 : 60), {p1, p3,p6, p5,
(p14 : 64), (p15 : 66) p4, p2, p8, p10}

9 (p9 : 51), (p12 : 52), (p11 : 60), (p14 : 64), {p1, p3, p5, p4,
(p15 : 66) p2, p8, p10}

10 (p12 : 52), (p11 : 60), (p14 : 64), (p15 : 66) {p1, p3, p5, p4,
p2, p8, p10}

11 (p12 : 52), (p11 : 60), (p14 : 64), (p15 : 66), {p1, p3, p5, p4,
(p13 : 66) p2, p8, p10}

Table 4: VCS2 for the example of Figure 11

Points Size Points Size
1) Hospital 0.56% 5) Church 13%
2) Building 1.6% 6) School 15%
3) Summit 7% 7) Populated place 18%
4) Cemetery 12% 8) Institution 34%

Table 5: USGS data (http://geonames.usgs.gov/)

tributes of data points of P . Assume that S(A) is the set of
skyline points considering only the non-spatial attributes in
A. Also, let S(A, Q) be the skyline when both attributes in
A and distances to query points in Q are considered. Con-
sequently, we have S(A)⊂S(A, Q) and S(Q)⊂S(A, Q). Our
algorithms can easily be changed to find S(A, Q) as follows.
1) We first use a general skyline algorithm to find S(A). No-
tice that this is a batch one-time computation independent
from the query (i.e., Q). 2) We modify each of our algo-
rithms such that the domination check for each point inside
the search region and outside CH(Q) considers both its non-
spatial attributes and its distances to the points of CHv(Q).
3) The search region (i.e., rectangle B) is extended to ex-
amine all possible candidate points. The following lemma
specifies the limits of the new search region.

Lemma 7. Any point p farther than all points in S(A)
from all qi ∈ Q, cannot be a skyline point with respect to
attributes in A and query points in Q. That is,

∀p′ ∈ S(A), ∀qi ∈ Q, D(p, qi) ≥ D(p′, qi) ⇒ p /∈ S(A, Q)

Utilizing Lemma 7, we change the rectangle B to the MBR
of the points violating the above equation. This is straight-
forward as the region is the union of circles C(qi, p) where
p ∈ S(A). Therefore, our B2S2, VS2, and VCS2 algorithms
answer SSQs when mixed with non-spatial attributes.

7. PERFORMANCE EVALUATION
We conducted several experiments to evaluate the perfor-

mance of our proposed approaches. In real-world applica-
tions with a small number of original attributes, the tradi-
tional BBS approach outperforms algorithms such as BNL
[1]. Hence, we only compared our algorithms with BBS.
First, we compared both B2S2 and VS2 with the BBS ap-
proach, with respect to: 1) overall query response time, and
2) number of dominance checks. Moreover, we compared the
disk I/O accesses incurred by the underlying R-tree index

0

0.5

1

1.5

2

2.5

3

3.5

4

2 4 6 8 10
|Q|

CP
U

 c
os

t (
se

c) BBS B2S2

B2S2* VS2

0

1

2

3

4

5

6

2 4 6 8 10|Q|

nu
m

be
r o

f d
om

in
an

ce
 c

he
ck

s
(K

)

BBS B2S2

B2S2* VS2

a) Time b) Dominance Checks

0.0

0.5

1.0

1.5

2.0

2.5

3.0

2 4 6 8 10|Q|

nu
m

be
r o

f a
cc

es
ed

 n
od

es
(K

)

BBS B2S2

B2S2*

0

1

2

3

4

5

6

0.01% 0.10% 0.25% 0.45% 0.75%

MBR(Q)

CP
U

 c
os

t (
se

c) BBS B2S2

B2S2* VS2

c) I/O d) Time

0

1

2

3

4

5

6

7

0.01% 0.10% 0.25% 0.45% 0.75%

MBR(Q)

n
u

m
b

er
 o

f
d

o
m

in
a

n
ce

 c
h

ec
k

s

(K
)

BBS B2S2

B2S2* VS2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.01% 0.10% 0.25% 0.45% 0.75%

MBR(Q)

nu
m

be
r o

f a
cc

es
ed

 n
od

es
 (K

)

BBS B2S2

B2S2*

e) Dominance Checks f) I/O

Figure 12: Query cost vs. number of query points
and the area covered by Q

structures used by B2S2 with those of BBS. We evaluated
all approaches by investigating the effect of the following pa-
rameters on their performances: 1) number of query points
(i.e., |Q|), 2) the area covered by MBR of Q, 3) cardinal-
ity of the dataset, and 4) density of the data points. We
also evaluated the performance of VCS2 using a synthetic
dataset of moving objects.

We used a real dataset for our experiments. The dataset
is obtained from the U.S. Geological Survey (USGS) and
consists of 950, 000 locations of eight different businesses in
the entire country. Table 5 shows the characteristics of this
dataset which is indexed by an R*-tree index with the page
size of 1K bytes and a maximum of 50 entries in each node
(capacity of the node). The index structure is based on the
original attributes of the data points (i.e., latitude and lon-
gitude) and is utilized by both BBS and B2S2 approaches.
VS2 and VCS2 use a pre-built Delaunay graph of the en-
tire dataset. We also used the Graham Scan algorithm [3]
for convex hull computation in both VS2 and VCS2. The
experiments were performed on a DELL Precision 470 with
Xeon 3.2 GHz processor and 3GB of RAM. We ran 1000 SSQ
queries using randomly selected query points and reported
the average of the results.

In the first set of experiments, we varied the number of
query points and studied the performance of our proposed
algorithms. We set the maximum MBR(Q) to 0.3% of the
entire dataset. Figure 12a depicts query response time of
B2S2, B2S2*, VS2 and BBS where B2S2* is a variation of
B2S2 in which we use mindist(e, Q) instead of mindist(e,

760

CHv(Q)) to sort the heap entries. Therefore, both B2S2*
and BBS find the skyline points in the same order. Notice
that B2S2 can employ any monotone function. As shown
Figure 12a, as the superior algorithm VS2 significantly out-
performs BBS by a wide margin (3-6 times better in most
cases). Given four query points, VS2 finds the skyline in
only 0.12 seconds while BBS requires 0.78 seconds for the
same query. While the figure illustrates the results for SSQ
with respect to up to 10 query points, the trend shows that
VS2 performs significantly better than BBS as the number
of query points increases. The figure indicates that while
both B2S2 and B2S2* outperform BBS, B2S2 is faster. The
reason is that while calculating mindist, it computes only
the distances to convex query points of Q instead of the
entire Q (on average 6 points where |Q| = 10).

Figure 12b shows the average number of dominance checks
performed by each algorithm. As expected, VS2 constantly
performs only 65%-75% of the dominance checks performed
by BBS. Considering the fact that each VS2’s check is also
faster than BBS’s, this explains the superiority of VS2 in
terms of performance. The figure shows that both B2S2

and B2S2* require less checks than BBS which shows the
efficiency of utilizing the rectangle B to avoid unnecessary
checks (see Section 4.1). Figure 12c illustrates the number
of R*-tree nodes accessed by B2S2, B2S2*, and BBS. As
the figure shows, BBS and B2S2* access exactly the same
nodes as they both use a common mindist function dur-
ing the search. B2S2’s use of a different function results into
slightly more node accesses which has no impact on its over-
all performance as shown in Figure 12b. The reason here is
that 1) the total number of dominance checks of B2S2 and
B2S2* are less than that of BBS (see Figure 12b) and, 2)
each check in B2S2 and B2S2* requires distance computa-
tion only for the convex query points. Even the extra con-
vex hull computation in our algorithms does not downgrade
their performance.

The next set of experiments investigates the impact of
closeness of the query points on the performance of each
algorithm. We varied the area covered by the MBR of Q
from 0.01% to 0.75% of the entire USGS dataset (i.e., ap-
proximately 90 to 7K data points in the MBR). Figures
12d-f depicts the average query response time, number of
dominance checks, and R*-tree node accesses for all the al-
gorithms, respectively (|Q| = 6). As the query points get
farther, more points need to be examined by an SSQ algo-
rithm which downgrades its performance. The results show
a trend similar to those of the first experiment; VS2 is the
superior algorithm. It performs only 33% of BBS’s dom-
inance checks which makes it by one order of magnitude
faster than BBS even for highly scattered query points (i.e.,
MBR(Q) = 0.75%). The reason is that as the MBR of Q
grows, BBS requires more R-tree nodes to examine. How-
ever, VS2 once enters CH(Q) performs computation only in
a local neighborhood. Likewise, B2S2 demonstrates superi-
ority over BBS.

The third set of experiments focuses on the performance of
the algorithms when the density of the data points changes.
We used five different point types from Table 5 with hospi-
tals and institutions as the most sparse and dense points,
respectively. Figures 13a-c illustrates the results for |Q| = 6
and maximum MBR(Q) = 0.5%. As expected, it always
takes more time and I/O to find skyline for denser data
points. The reason is that for denser data more skyline

0

0.5

1

1.5

2

0.56% 1.60% 7% 15% 34%

Density

CP
U

 c
os

t (
se

c) BBS B2S2

B2S2* VS2

0

1

2

3

4

5

0.56% 1.60% 7% 15% 34%

Density

n
u

m
b

er
 o

f
d

o
m

in
a

n
ce

 c
h

ec
k

s

(K
)

BBS B2S2

B2S2* VS2

a) Time b) Dominance Checks

0.0

0.5

1.0

1.5

2.0

2.5

0.56% 1.60% 7% 15% 34%

Density

n
u

m
b

er
 o

f
a

cc
es

ed
 n

o
d

es
 (

K
) BBS B2S2

B2S2*

0%

20%

40%

60%

80%

100%

3 4 5 6 7 8 9 10
|Q|

ac
tio

n
tri

gg
er

ed

VS2 VCS2 NOP

c) I/O d) Continuous SSQ

Figure 13: Query cost and continuous SSQ

points correspond to a query set Q with fixed-size MBR and
hence all proposed algorithms must examine more points.
This experiment also shows that the cardinality of the dataset
has the same impact as that of the density on the perfor-
mance of all the algorithms.

Our next set of experiments studies the performance of
VCS2. We used GSTD [11] to generate trajectories of 3-10
moving query points where MBR(Q) = 0.3%. The move-
ments of query points obey a uniform distribution and fol-
lows a moderate speed. For different query sizes |Q|, we
counted the number of moves (out of 1000 moves per query
point) for which VCS2 1) identifies the movement pattern I
and hence does nothing (shown as NOP), 2) detects move-
ment patterns II-V and updates the old skyline (shown as
VCS2), or 3) re-runs VS2 (shown as VS2). Figure 13d shows
the percentage of the movements with the corresponding
triggered actions. Surprisingly, the figure shows that on av-
erage for all query sizes only less than 25% of movements
require the entire skyline to be recomputed (i.e., re-running
VS2). For three query points, this never happens as any
movement follows one of the patterns II, III or V. The fig-
ure also verifies that as the number of query points increases,
the chance that a movement changes the skyline decreases.
We separately measured the average query response time of
VCS2 as only 35% of that of VS2 for all query sizes. There-
fore, this experiment justifies the superiority of VCS2 for
continuous SSQ over VS2.

Finally, Table 6 shows the results of our last set of experi-
ments with some extreme cases: spatial skyline of 1) all U.S.
schools with respect to 3, 000 summits in Colorado whose
MBR covers about 2.5% of the entire U.S. (large Q), 2) all
U.S. hospitals with respect to all U.S. summits (|Q| � |P |),
and 3) all U.S. summits with respect to all buildings of USGS
dataset (large Q). Notice that in the last two cases, both
data and query sets cover the same area (i.e., entire U.S.).
Our results show the superiority of both VS2 and B2S2 over
BBS. When the size of query set is significantly more than
that of data, the overhead of convex hull computation be-
comes the dominant factor in the performance of VS2 and
B2S2. However, these algorithms still outperform BBS as

761

Data Query CPU (sec.) # of Dominance Checks

(# points) (# points) BBS B2S2 VS2 BBS B2S2 VS2

Schools Colorado 31.4 6.7 6.5 3,745 3,460 1,353
(139,523) Summits

(3,171)
Hospitals Summits 22,171 1,379 1,314 10,629 5,726 5,167
(5,314) (69,498)
Summits Buildings>30,000 2,212 1,427 - 143,222 65,749
(69,498) (15,126)

Table 6: Experimental results for extreme scenarios

even with large query sets the number of convex points is
significantly small (e.g., only 19 points for 69, 498 points in
the second case). This highly reduces the cost of dominance
checks performed by our algorithms. In contrast, each dom-
inance check in BBS involves a large number of distance
computations (2×69, 498 computations in the second case).

8. RELATED WORK
The best known skyline algorithm that can answer SSQs is

the Branch-and-Bound Skyline algorithm (BBS) [8]. BBS is
a progressive optimal algorithm for the general skyline query.
In the setting of BBS, a dynamic skyline query specifies a
new n-dimensional space based on the original d-dimensional
data space. First, each point p in the database is mapped to
the point p̂ = (f1(p), . . . , fn(p)) where each fi is a function
of the coordinates of p. Then, the query returns the gen-
eral (i.e., static) skyline of the new space (the corresponding
points in the original space). We can define the spatial sky-
line query as a special case of the dynamic query. Given the
query set Q, we use fi = D(p, qi) to map each point p to
p̂. Therefore, our spatial skyline can be defined as a special
case of dynamic skyline presented in [8]. While BBS is a
nice general algorithm for any function f , since it has no
knowledge of the geometry of the problem space, it is not
as efficient as our proposed algorithms for the spatial case
when f is a distance function.

The Block Nested Loop (BNL) approach [1] for general
skyline computation can also address SSQs. BNL outper-
forms BBS when the number of skyline points is small and
the dimensionality is high [8]. Although with a large set
of query points for SSQ the number of derived attributes is
high, the number of original attributes which are used by
BBS remains unchanged; the points usually have only two
dimensions in real-world examples. This makes BBS to be
the best competitor approach and hence we compared our
techniques only with BBS in Section 7.

There are studies in the area of spatial databases related
to SSQ. Papadias et al. [9] proposed efficient algorithms to
find the point with minimum aggregate distance to query
points in Q. The aggregate distance is a monotone function
over distances to points of Q. The optimum point is one of
the spatial skyline points with respect to Q. Their algorithm
seeks only for the optimum point so no dominance check is
required. Huang and Jensen [4] studied the interesting prob-
lem of finding locations of interest which are not dominated
with respect to only two attributes: their network distance
to a single query location q and the detour distance from
q’s predefined route through the road network. Their pro-
posed algorithms rely on existing nearest neighbor and range
query approaches to find a candidate set. They then apply
naive in-memory skyline computation on the candidate set
to extract the result. While their in-route skyline query is
distance-based similar to SSQ, it focuses on a specific appli-
cation. Our SSQ problem however targets a different and
broader range of applications for which we propose efficient
customized skyline computation algorithms in vector space.

9. CONCLUSIONS AND FUTURE WORK
We introduced the novel concept of spatial skyline queries.

We studied the geometric properties of the solution to these
queries. We analytically proved that a set of definite sky-
line points exists. These are the points whose Voronoi cells
are inside or intersect with the convex hull of query points
(see Theorems 1 and 3 in Section 3). We also proved that
the locations of those query points inside the convex hull
of all query points have no effect on the final spatial sky-
line (Theorem 2). Based on these theoretical findings, we
proposed two efficient algorithms for SSQ considering static
query points. Through extensive experiments, we showed
the superiority of our algorithms over the traditional BBS
approach. Our VS2 algorithm exhibits up to 6 times faster
performance improvement over BBS.

We also studied a variation of the SSQ problem for moving
query points. Our VCS2 algorithm effectively updates the
spatial skyline upon any change to the locations of the query
points. Our approach exhibits a significantly better perfor-
mance than re-computing the skyline even using our efficient
VS2 algorithm. Finally, we showed how all three proposed
algorithms can address the SSQ problem when mixed with
non-spatial attributes.

We intend to study the challenges of SSQ in metric spaces
such as road networks. Intuitively, similar geometric prop-
erties corresponding to those we proved in Section 3 for a
vector space can be proved for metric spaces. We plan to
utilize these properties to propose efficient SSQ algorithms
for road network databases.

10. REFERENCES
[1] S. Börzsönyi, D. Kossmann, and K. Stocker. The Skyline

Operator. In Proceedings of ICDE’01, pages 421–430, 2001.
[2] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Skyline

with Presorting. In Proceedings of ICDE’03, pages 717–816.
IEEE Computer Society, 2003.

[3] M. de Berg, M. van Kreveld, M. Overmars, and
O. Schwarzkopf. Computational Geometry: Algorithms and
Applications. Springer Verlag, 2nd edition, 2000.

[4] X. Huang and C. S. Jensen. In-Route Skyline Querying for
Location-based Services. In 4th International Workshop on
Web and Wireless Geographical Information Systems
(W2GIS’04), volume 3428, pages 120–135. Springer, 2004.

[5] Z. Huang, C. S. Jensen, H. Lu, and B. C. Ooi. Skyline
Queries Against Mobile Lightweight Devices in MANETs.
In Proceedings of ICDE’06. IEEE Computer Society, 2006.

[6] D. Kossmann, F. Ramsak, and S. Rost. Shooting Stars in
the Sky: An Online Algorithm for Skyline Queries. In
Proceedings of VLDB’02, pages 275–286, 2002.

[7] X. Lin, Y. Yuan, W. Wang, and H. Lu. Stabbing the Sky:
Efficient Skyline Computation over Sliding Windows. In
Proceedings of ICDE’05, pages 502–513. IEEE Computer
Society, 2005.

[8] D. Papadias, Y. Tao, G. Fu, and B. Seeger. Progressive
Skyline Computation in Database Systems. ACM Trans.
Database Syst., 30(1):41–82, 2005.

[9] D. Papadias, Y. Tao, K. Mouratidis, and C. K. Hui.
Aggregate Nearest Neighbor Queries in Spatial Databases.
ACM Trans. Database Syst., 30(2):529–576, 2005.

[10] K.-L. Tan, P.-K. Eng, and B. C. Ooi. Efficient Progressive
Skyline Computation. In Proceedings of VLDB’01, pages
301–310, 2001.

[11] Y. Theodoridis and M. A. Nascimento. Generating
Spatiotemporal Datasets on the WWW. SIGMOD Record,
29(3):39–43, 2000.

762

